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Abstract
We study currents in a quantum ring threaded by a magnetic flux which is varied in an arbitrary
way from an initial constant value φ1 at time t1 to a final constant value φ2 at time t2. We
analyze how the induced currents for t > t2 can be controlled by the rate of flux variation
φ̇ = (φ2 − φ1)/(t2 − t1). The dynamics of electrons in the ring is described using the Hubbard
and the extended Hubbard models. In the Hubbard model with infinite on-site repulsion the
current for t > t2 is shown to be independent of the flux variation before t2 and is fully
determined by a solution of the initial equilibrium problem and by the value φ2 of the flux. For
intermediate values of the interaction strength the current displays regular or irregular time
oscillations and the amplitude of oscillations is sensitive to the rate of the flux changing φ̇: slow
changes of the flux result in small amplitudes of the current oscillations and vice versa. We
demonstrate that the time dependence of the induced current bears information on electronic
correlations. Our results have important implications for not only mesoscopic rings but also the
designing of quantum motors built out of ring-shaped optical lattices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Time-dependent manipulation of quantum states in nanosys-
tems is an important problem directly related to future
applications both in the context of quantum control [1] and in
the reduction of decoherence [2]. There is a natural area for
implementing such ideas: mesoscopics and nanoscopics where
quantum effects play a crucial role [3]. Unfortunately, analysis
of quantum systems affected by external time-dependent forces
and/or fields F(t) is extremely difficult and only very few
models are exactly solvable [4]. The best known examples
concern a driven quantum oscillator [5–7] and a two-level
system in a circularly polarized magnetic field [8, 9]. In
many cases the solvability is related to certain symmetries
of the system. Moreover, there are interesting regimes of a
strong external driving F(t) when the linear response theory
cannot be applied and nonlinear responses as well as time-
dependent phenomena govern the system dynamics. For
a time-periodic driving F(t) one may apply the Floquet
theory [10] which in many cases provides only approximate
numerical results. However, there is a Floquet-theory-based
approach which admits an exact analytical solution at arbitrary

external driving [11]. Another problem concerns the possibility
of experimental verification of theoretical predictions. Here a
pertinent question arises: how does the final (generally non-
equilibrium) state depend on the particular shape of the driving
F(t)? For the purpose of practical applications it is desirable to
find systems which are robust against small temporal changes
of F(t), e.g., originating from imperfect realization of the
assumed conditions. A realistic example will be pointed out
in this work.

We study currents in a one-dimensional (1D) quantum
system of ring topology threaded by a time-dependent
magnetic flux φ = φ(t) generated by a magnetic field B =
B(t) (see figure 1). If the magnetic field is perpendicular to
the ring, a variety of Aharonov–Bohm effects can be observed.
As an example one can mention persistent currents which, in
the case of a static magnetic field B , oscillate as a function
of the flux φ [12]. When the magnetic flux changes linearly
with time, φ(t) = At , the induced electromotive force E ∝
dφ(t)/dt = A is time independent and electrons move in a
static electric field. This case is interesting because it is similar
to a system of electrons moving in a periodic lattice under the
influence of a dc voltage. In the regime of small values of
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Figure 1. The scheme of the example system studied: the quantum
ring consists of N = 6 sites and four electrons, two with spin down
and two with spin up, n↑ = 2, n↓ = 2. The ring is threaded by the
magnetic flux φ which is varied in an arbitrary way from the initial
constant value φ(t1) at time t1 to the final constant value φ(t2) at time
t2. Electrons can jump to nearest neighboring sites and two electrons
with opposite spins can occupy the same site. The induced currents
are studied for times t > t2 and in some regimes can be controlled by
the rate of flux variation φ̇ = [φ(t2)− φ(t1)]/(t2 − t1).

A the induced currents display Bloch oscillations [13] and the
time-averaged current is zero. It is true at zero temperature
and in the dissipationless regime (the case of elastic scattering
of electrons). In the case of inelastic scattering of electrons,
a dc current can occur [14]. Also for large values of A the
induced currents may display a dc component [15, 16]. The
last example that we want to mention is a current driven by
a periodic magnetic flux φ(t) = φdc + φac cos(ωt) [17]. In
this case, a dc persistent current is of the same order as in the
static magnetic field and the oscillating current is very small,
containing in its Fourier spectrum a significant contribution
from only a small number of frequencies [18].

Here, we propose another scheme involving variation of
the magnetic flux to manipulate currents (see figure 1): the
magnetic field perpendicular to the ring is changed from its
initial constant value B(t1) to the final constant value B(t2).
The corresponding magnetic flux is changed from the initial
constant value φ(t) = φ(t1) = φ1 for time t � t1 to the
final constant value φ(t) = φ(t2) = φ2 for t � t2. The
dynamics of electrons moving in the ring is described by the
Hubbard and the extended Hubbard models. We analyze how
the induced currents depend on the rate of flux variation φ̇ =
(φ2 − φ1)/(t2 − t1). We find that for zero and infinitely strong
many-body interactions the resulting current has the following
properties: for t > t2 it is independent of φ(t) for t1 < t < t2,
i.e., the resulting current is independent of the way in which
the magnetic flux is modified/switched on; the solution of the
equilibrium problem at t = t1 and the value of φ2 entirely
determine the current for t � t2. For intermediate values of
the interaction strength we carry out numerical calculations
and point out that the current displays regular or irregular time
oscillations and the amplitude of the oscillations is sensitive
to the rate of the flux changing φ̇: slow changes of the flux
result in small amplitudes of the current oscillations and vice
versa. We conclude that in some regimes the currents can be
controlled by the rate of flux variation φ̇.

The 1D Hubbard-type Hamiltonians with time-dependent
flux have been investigated numerically in the context of
various physical phenomena. The analyzed time dependence

of the flux was directly connected with the problems
investigated. In particular, φ(t) ∝ t has been discussed in [16]
as a driving mechanism for the metal–insulator transition,
whereas φ(t) ∝ exp(−at2) cos(ωt) has been used in a
recent study of light-pulse excitations in one-dimensional Mott
insulators [19]. It has also been argued for a system of non-
interacting carriers that currents can be generated by applying
two linearly polarized unipolar pulses [20, 21].

Our analysis can be applied either to mesoscopic rings or
to rings built in the optical lattice setup [22]. The difference in
energy scales of the two systems shows up mainly in different
time scales of the external driving.

The plan of the paper is as follows. In section 2
we consider non-interacting particles moving in a nanoring
threaded by a varying magnetic flux. Section 3 contains
analysis of currents in Hubbard rings. In section 4 we
analyze currents in the limiting regime of the infinite Coulomb
repulsion. Transport of particles within the extended Hubbard
model is studied in section 5. Finally, section 6 provides a
summary and some conclusions.

2. Non-interacting particles

Although the method of reasoning that we apply for non-
interacting fermions is rather trivial, it nicely illustrates the
general method which is applicable also to a non-trivial case
of correlated electron systems. Therefore, we start with the
Hamiltonian of non-interacting particles in the ring threaded
by the magnetic flux. It is a sum of one-particle Hamiltonians

H (t) = 1

2m

[
p − e

L
φ(t)

]2

, (1)

where L is the circumference of the ring and e is the charge of
the particle. The current operator is related to the momentum
observable in the following way:

I (t) = −∂H (t)

∂φ(t)
= e

mL

[
p − e

L
φ(t)

]
. (2)

Now, let us assume that the magnetic flux φ is varied in an
arbitrary way from an initial value φ1 at time t1 to a final value
φ2 at time t2. One can explicitly extract the time-dependent
part of the current operator

I (t) = I1 +�I (t), (3)

where

I1 = e

mL

[
p − e

L
φ(t1)

]
, (4)

�I (t) = e2

mL2
[φ(t1)− φ(t)]. (5)

The averaged current flowing in the ring is determined by the
relation

〈I (t)〉 = Tr(ρ(t)I (t)), (6)

where ρ(t) is a density matrix of the system. Its time evolution
is determined by the von Neumann equation

ih̄ρ̇(t) = [H (t), ρ(t)]. (7)
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Note that from equation (1) it follows that

[H (ta), H (tb)] = 0 (8)

for arbitrary times ta and tb. In consequence, a solution of the
von Neumann equation has the form

ρ(t) = exp

[
− i

h̄

∫ t

t0

H (s) ds

]
ρ(t0)exp

[
i

h̄

∫ t

t0

H (s) ds

]
. (9)

If ρ(t0) commutes with the Hamiltonian H (t) for any t �
t0 then ρ(t) = ρ(t0). The latter requirement is not very
restrictive. It is fulfilled by the Gibbs state

ρ(t0) = e−βH (t0)

Tr[e−βH (t0)] (10)

and, from the experimental point of view, seems to be the
easiest and the most natural choice of the initial preparation.
Let us take t0 = t1. Then the averaged current reads

〈I (t)〉 = Tr(ρ(t)I (t)) = Tr[ρ(t1)I1] +�I (t), (11)

where the first term on the rhs is the initial equilibrium
persistent current and the second term is the current induced
by a time-dependent component �I (t). As the latter quantity
is independent of the initial state, one can easily calculate
the current induced in a system of n non-interacting particles
�In(t) = n�I (t). It is instructive to compare �In(t)
with the maximal amplitude of persistent currents IPC at zero
temperature [12]. One finds

〈�In(t)〉
IPC

= 2
φ(t1)− φ(t)

φ0
, (12)

where IPC = vFe/L, vF = h̄πn/(mL) is the Fermi velocity
and φ0 = h/e is the flux quantum.

Let us notice remarkable properties resulting from
equation (12), namely:

(1) the averaged current 〈I (t)〉 depends on the flux only at the
same instant of time t , i.e., the current is independent of
the way in which the magnetic flux is switched on;

(2) 〈I (t)〉 is fully determined by the solution of the initial
equilibrium problem;

(3) one can induce currents which are significantly larger in
amplitude than the maximal persistent currents provided
that φ(t) − φ(t1) � φ0.

3. Hubbard rings

It is known that electrons in 1D systems are almost
always strongly correlated [23]. In that sense, the
free electron approximation applied to 1D quantum rings
is disputable because strong electronic correlations may
substantially modify the properties of persistent currents; see
e.g. review [24]. In the following we discuss to what extent the
conclusions derived for free fermions ((1)–(3)) are applicable

to more realistic systems of correlated particles. First, we
consider the 1D Hubbard model [23, 25]

HH(t) = −J
∑
j,σ

(eiφ̃(t)a†
j+1,σa j,σ + h.c.)

+ U
∑

j

n j,↑n j,↓, (13)

where J is the hopping integral, U is the on-site Coulomb
repulsion, n j,σ = a†

j,σa j,σ and σ = ↑,↓. For the ring

consisting of N sites the dimensionless magnetic flux φ̃(t) =
2πφ(t)/Nφ0. The current operator reads

I (t) = i
2π J

Nφ0

∑
j,σ

(eiφ̃(t)a†
j+1,σa j,σ − h.c.). (14)

We choose J as the energy unit, whereas time and current
will be expressed in units of τ = h̄/J and I0 = 2π J/Nφ0,
respectively.

Before we carry out discussion based on analytical results,
it is instructive to inspect numerical studies. We have
considered a current induced by a linear (in time) change of
magnetic flux from the initial constant value φ(t1 = 0) = 0
to the final constant value φ(t2) = φ0 (see figure 2). Under
equilibrium conditions the partition function is a periodic
function of flux with the period φ0. Therefore, the equilibrium
persistent currents for φ = 0 and φ0 are equal. This was the
motivation for our choice of φ(t2).

The time dependence of the average current 〈I (t)〉 has
been calculated from equation (6) via a solution of the von
Neumann equation for ρ(t) under an initial condition being
the equilibrium state ρ(t1) ∝ exp(−βHH(t1)) with β → ∞.
Results presented in figure 2 have been obtained for a ring
consisting of N = 6 sites with various numbers of spin up
n↑ and spin down n↓ particles. The general results can be
formulated as follows: in the small and large U/J limits, a
dc current is observed for t > t2. Its amplitude is independent
of the rate of flux variation φ̇ = (φ2 − φ1)/(t2 − t1) and is
greater than the maximal value of the equilibrium persistent
current. For moderate values of U/J , the current displays
regular or irregular time oscillations. However, its average over
time is non-zero and the dc component can be detected. The
typical frequency of the oscillations depends on the electron
correlations: for stronger correlations, i.e., for larger U/J , the
frequency of the current is higher. In contrast, the amplitude
decreases as U/J increases. The amplitude of the oscillations
is more sensitive to the rate of the flux changing φ̇: slow
changes of the flux result in small amplitudes of the current
oscillations and vice versa.

From figure 2 we conclude that more regular behavior of
the current versus time can be observed for a symmetric case
n↑ = n↓ (the left panel of figure 2). The findings are as
follows:

(i) Two characteristic regimes can occur: one with a strict dc
component of the current (a negligibly small part of the
alternating current) 〈I (t)〉 = Idc and one with the regular
time-oscillating component, 〈I (t)〉 = Idc + Iac(t).

(ii) The dc current occurs in two limiting regimes of very weak
and very strong electron–electron repulsion (the cases
U = 0 and 16J ).
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Figure 2. The dimensionless averaged current 〈I (t)〉/I0 induced by the change of the magnetic flux φ(t) from the initial constant value
φ(t1 = 0) = 0 to the final constant value φ(t2) = φ0 with the rate φ̇(t) = const for t ∈ (t1, t2). The results are obtained for the ring consisting
of N = 6 sites and four electrons, n↑ = 2, n↓ = 2 (left panels); and five electrons, n↑ = 3, n↓ = 2 (right panels). Continuous (red) lines show
results for t2 = τ and dashed (blue) lines for t2 = 25τ . The horizontal dotted lines show the maximal values of the equilibrium persistent
current.

(iii) The regular ac current with a non-zero dc component is
detected for the case U = J , i.e. when two energy scales
in the system (13) are the same.

In section 5 we discuss how the general characteristics of
the induced currents depend on the number of charge carriers.
Another pertinent question concerns the scaling of the induced
current with the size of the system. The latter problem goes
beyond the scope of the present work.

4. Currents in the infinite-U Hubbard model

The numerical results suggest that the conclusions (1) and
(2) formulated at the end of section 2 for free particles
hold true also for the system described using the Hubbard
Hamiltonian (13) with U = 0 or U/J = ∞. The former
case (U = 0) is again trivial, since in the Bloch representation
one gets

HH(t) = −
∑
k,σ

2J cos(k − φ̃(t))a†
k,σ ak,σ . (15)

As equation (8) holds true for the above Hamiltonian, ρ(t) =
ρ(t1) = const and 〈I (t)〉 is independent of the magnetic flux

φ(t ′) for t ′ < t . Below we present simple calculations, which
explicitly show that currents induced in the U → ∞ Hubbard
model have the same properties as the currents in a system
of non-interacting fermions. In the case of infinitely strong
interaction one can rewrite the Hamiltonian (13) in the form

HH(t) = HL(t)+ HR(t), (16)

HL(t) = H †
R(t) = −Jeiφ̃(t)P

∑
j,σ

a†
j+1,σa j,σ P, (17)

where the operator P = �N
j=1(1 − n j,↑n j,↓) projects out states

with doubly occupied sites. It is clear that [HL(t1), HL(t2)] =
[HR(t1), HR(t2)] = 0. Then, in order to prove that equation (8)
holds true, it is enough to show that [HL(t1), HR(t2)] = 0. One
finds

[HL(t1), HR(t2)] = J 2ei(φ̃(t1)−φ̃(t2))(A − B), (18)

A =
∑

i, j,σ,μ

Pa†
i+1,σ ai,σ P̄a†

j,μa j+1,μP, (19)

B =
∑

i, j,σ,μ

Pa†
j,μa j+1,μ P̄a†

i+1,σai,σ P. (20)
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Figure 3. The same as in the left column of figure 2 but for the extended Hubbard model with V = 0.4U .

We introduce the notation P̄ = P because it is convenient to
distinguish different positions of these operators. Analyzing
the operator A one can note that because of the presence
of the projection operators P one can neglect P̄ unless the
hopping a†

i+1,σai,σ removes double occupancy generated by

a†
j,μa j+1,μ. A similar method of reasoning applies to the

operator B . Therefore, in equations (19) and (20) one can
replace P̄ with (1−δi j)+δi j P̄ . It is also important to note that
ai,−σ P̄a†

i,σ |ψ〉 = 0 for arbitrary state |ψ〉. Taking into account
these properties one gets

A − B =
∑

i, j,σ,μ

(1 − δi j)P[a†
i+1,σai,σ , a†

j,μa j+1,μ]P

+
∑
iσ

Pa†
i+1,σai,σ P̄a†

i,σai+1,σ P

−
∑
iσ

Pa†
i,σai+1,σ P̄a†

i+1,σai,σ P. (21)

The first term vanishes because the commutator is proportional
to δi j . Now, the projection operators P̄ in the second and third
terms can be replaced by 1−ni,−σ and 1−ni+1,−σ , respectively.
Then, one gets

A − B = P
∑
iσ

ni+1,σ (1 − ni,σ )(1 − ni,−σ )P

− P
∑
iσ

ni,σ (1 − ni+1,σ )(1 − ni+1,−σ )P. (22)

One can see that A − B is expressed as a difference of two
operators (the first and second lines in the above equation). The
first one counts how many occupied sites succeed empty sites,
whereas the latter counts how many occupied sites precede
empty sites. In a ring-shaped system these numbers are equal
for an arbitrary state. Hence A − B = 0, equation (8) holds
true and, consequently, changing the flux does not influence
the density matrix.

It is instructive to discuss our results in the framework of
the standard approach to the 1D Hubbard model via the Bethe
ansatz [26]. The latter provides a solution for all interaction
strengths and band-fillings and we refer the reader to [27] for a

comprehensive review on the equilibrium properties of the 1D
Hubbard model. In particular, the elementary excitations are
expressed in terms of holons and spinons which, in general,
interact and are not independent [27]. Then, analysis of
the response functions within the Bethe ansatz is far from
straightforward. The complete charge–spin separation over
all energy scales occurs only in the case U → ∞ [28].
As the vector potential couples to charged orbital degrees of
freedom, in the case of the full spin–charge separations the
system responds to time-dependent flux in the very same way
as a system of non-interacting fermions.

5. Currents in the extended Hubbard model

In this section, we study currents in a more general system
which in contrast to the previous one is non-integrable [29].
For this purpose we have carried out numerical calculations
for the extended Hubbard model with the Hamiltonian3

HEH = HH + V
∑
jσμ

n j,σn j+1,μ, (23)

where V is the potential of the nearest neighbor Coulomb
repulsion.

Figure 3 shows results similar to those presented in the left
column of figure 2 but calculated for the extended Hubbard
model with V = 0.4U . A comparison of figures 2 and 3
suggests that the general properties of 〈I (t)〉 derived for the
non-interacting system hold true also for the extended Hubbard
model, at least in some regimes of the model parameters. As
can be inferred from figure 3, fluctuations of 〈I (t)〉 for t > t2
gradually extinguish when the interactions become stronger
and the magnitude of these oscillations decreases when t2

increases. Simultaneously, for U � J the magnitude of the

3 For U/J → ∞, the extended Hubbard model can be mapped onto the model
of spinless fermions with nearest neighbor repulsion which, in turn, can be
mapped onto the X X Z Heisenberg model and then analyzed via the Bethe
ansatz. For details, see e.g., [30].
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Figure 4. Ī (upper panel) and σ (lower panel) as a function of U and
V for the extended Hubbard model (see equation (24)). The current
is induced by the change of magnetic flux φ(t) from φ(t1 = 0) = 0
to φ(t2) = φ0 with φ̇(t) = const for t ∈ (t1, t2). The results are
obtained for N = 6, n↑ = 1, n↓ = 1 and t2 = τ .

Figure 5. The same as in figure 4 but for n↑ = 2, n↓ = 1.

current for t > t2 becomes almost independent of t2. Most
of the previous studies on the 1D extended Hubbard model
considered the half-filled [31–39] and/or quarter-filled [40–45]
cases. In the former there is a transition from a Mott insulator
to charge density wave insulator at U � 2V , whereas in the
latter case a metal–insulator transition takes place at finite V .

Figure 6. The same as in figure 4 but for n↑ = 2, n↓ = 2.

The phase diagrams obtained are complex and include charge
density waves, spin density waves, superconductivity and
regions with phase separation. Therefore, one may expect the
currents induced by change of magnetic flux to be sensitive to
various model parameters. In order to investigate this problem
it is necessary to describe the induced current in a quantitative
way. As demonstrated above, the general properties of the
current can be characterized by the dc component and the
oscillatory part, 〈I (t)〉 = Idc + Iac(t). Therefore, we have
calculated its time-averaged value Ī and the standard deviation
σ defined as

Ī = 1

tm − t2

∫ tm

t2

dt〈I (t)〉, σ 2 = 〈I (t)〉2 − Ī 2. (24)

In the analysis presented we have chosen tm = 100τ . The
time-averaged current corresponds to the dc component and
the standard deviation corresponds to the amplitude of the ac
current. The quantum-mechanical expectation value 〈I (t)〉 for
the current operator is defined in equation (6).

Figures 4–7 show the characteristics of the induced
currents for n↑ + n↓ = 2, 3, 4, and 5, respectively. Below
quarter-filling (figure 4), interactions affect the current in a
similar way to in the regular Hubbard model. The strongest
current fluctuations occur for the case where the interactions
strengths are of the order of the hopping integral. For large
values of U and/or V the time-averaged current remains
significant, whereas σ becomes negligibly small. The situation
at quarter-filling is very different, as can be inferred from
figure 5. For large U , the nearest neighbor repulsion tends to
localize the particles. Here, the current fluctuation can exceed
its time-averaged value. The most interesting results occur
for the electron concentration between quarter-filling and half-
filling (see figures 6 and 7). For this doping, the significant dc

6
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Figure 7. The same as in figure 4 but for n↑ = 3, n↓ = 2.

currents can be induced only for V  U/2, whereas the largest
current fluctuations occur for V � U/2. Analyzing results in
figures 4–7, one can observe a common feature: the current
fluctuations are strongest in the regimes where the gradient
∇ Ī (U, V ) is large.

6. Conclusions

We have analyzed currents induced by temporal changes of
the magnetic flux piercing a quantum ring. On the one hand,
experimental observations of the current may give important
insight into various properties of the system, e.g. the spin–
charge separation. On the other hand, one can induce an
oscillating current of desired amplitude and frequency, whose
time average is non-zero and contains a dc component. The
significant advantage of the method based on the flux variation
is the ‘non-invasive’ manipulation performed outside the ring,
without coupling to external leads. Recent progress in the
highly controlled fabrication of quantum ring structures makes
the verification of our findings quite realistic for the near future.
With respect to this point it is also necessary to recall the
significant progress in laser physics that enables tuning of the
femtosecond electromagnetic pulses. As discussed in [46],
the femtosecond pulse shaping allows for generating nearly
arbitrarily shaped ultrafast optical waveforms.

We should note that basic limitations (time shorter than the
relaxation time and the flux of the order of the flux quantum)
are not so restrictive for experiments performed in the optical
lattice setup. In this context, our results pose some important
implications for the design of quantum motors discussed
in [22]. In the Hubbard model with U/J  1 or U/J � 1
the current instantaneously follows the flux. This holds true

also in some specific regimes of the extended Hubbard model,
which have been studied in the preceding section. In these
regimes, significant dc currents can be generated neither by
impulses with φ(t2) � φ(t1) nor by a magnetic flux that has
small time-averaged value φ(t)  φ0. In the former case the
final current is the same as the initial one, whereas in the latter
case the time-averaged value of the current (dc component)
should be small. Consequently, in order to obtain the best
performance of the ac-driven quantum motors one should focus
on systems where the interaction strengths are of the order
of the hopping integral. However, generation of significant
dc currents in a system with U/J  1 or U/J � 1 is
possible provided φ(t2)−φ(t1) ∼ φ0. In this case, the induced
current is independent of the way in which the magnetic flux
is modified/switched on, i.e., the current is rather insensitive
to imperfect realization of the assumed time dependence of the
flux.
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